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S U M M A R Y
Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D
earth models is still a challenging task and requires substantial computing resources. The
overwhelming majority of current geophysical modelling approaches includes either finite
difference or non-adaptive finite element algorithms and variants thereof. These numerical
methods usually require the subsurface to be discretized with a fine mesh to accurately capture
the behaviour of the physical fields. However, this may result in excessive memory consump-
tion and computing times. A common feature of most of these algorithms is that the modelled
data discretizations are independent of the model complexity, which may be wasteful when
there are only minor to moderate spatial variations in the subsurface parameters. Recent de-
velopments in the theory of adaptive numerical solvers have the potential to overcome this
problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large
range of problems, also including nonlinear problems. In comparison with earlier applications
of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose
core ingredients arose from a rigorous analysis of the overall asymptotically optimal com-
putational complexity, including in particular, an optimal work/accuracy rate. Our adaptive
wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows
the forward modelling domain to be discretized with a quasi minimal number of degrees of
freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algo-
rithm memory efficient and (iii) the modelling accuracy scales linearly with computing time.
We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems.
To test its performance, numerical experiments were conducted with a series of conductivity
models exhibiting varying degrees of structural complexity. Results were compared with a
non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting
subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric
modelling. An analysis of the numerical accuracy as a function of the number of degrees of
freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for
simple and moderately complex models, whereas the results become comparable for models
with high spatial variability of electrical conductivities. The linear dependence of the mod-
elling error and the computing time proved to be model-independent. This feature will allow
very efficient computations using large-scale models as soon as our experimental code is
optimized in terms of its implementation.

Key words: Numerical solutions; Wavelet transform; Numerical approximations and analy-
sis; Non-linear differential equations; Electrical properties.

1 I N T RO D U C T I O N

Numerical modelling of geophysical data is an important compo-
nent of tomographic inversion algorithms and many other tasks in
Earth sciences. A key requirement in most applications is that the
modelling algorithms are able to provide swiftly and efficiently the
accurate response for a given Earth model. If only a few anomalous

bodies are embedded in a homogeneous medium, integral equa-
tion and boundary element methods may be preferable and benefi-
cial (e.g. Beard et al. 1996), but for more complicated structures,
as they typically arise in tomographic inversion problems, finite
difference or finite element algorithms, and variants thereof, are
more suitable (e.g. Morton & Mayers 2005; Brenner & Scott 2008).
These numerical techniques parametrize the subsurface properties
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(electrical conductivities, seismic velocities, etc.) either with struc-
tured or unstructured meshes and the unknown quantities (electrical
potentials, acoustic pressure fields, etc.) are determined at the mesh
vertices or edges.

Finite difference and finite element methods applied to linear
problems can be formulated as

AU = B, (1)

where A is a system matrix that depends on the governing par-
tial differential equation (including the material properties) and the
mesh geometry. U is a vector containing the unknown geophysical
field and vector B specifies the source properties (location, type,
etc.). It is beyond the scope of this paper to review finite difference
and finite element techniques in detail, but for our purposes it is
important to note that they employ small-support basis functions
for approximating the unknown quantities in U . These basis func-
tions have non-zero values only within a particular cell or block
(e.g. Brenner & Scott 2008). This is advantageous in the sense that
the resulting system matrix A in eq. (1) becomes very sparse. The
downside of these approaches is that accuracy criteria often dictate
a very dense mesh, which results in sizeable system matrices A.

Similar problems have been recognized for representing digital
images. Storage of high-resolution images using pixel-based storage
schemes (i.e. using small-support basis functions) result in exces-
sively large data volumes. This motivated the development of the
wavelet transform in the early 1980s (e.g. Mallat 1998). This math-
ematical technique allows the digital images to be represented using
only a few small-support and large-support basis functions, which
results in a substantial decrease of the data volume to be stored.
The term ‘large-support’ indicates that these basis functions may
extend over larger areas of the domain of interest. A key feature of
such image compression schemes is the consideration of the image
complexity, such that an image with only a few structural details
can be stored more compactly than a more complex image.

In recent years several techniques have been proposed to take
advantage of the wavelet transform technique in geophysical appli-
cations. An overview of the quite extensive literature can be found,
for example, in Kumar & Foufoula-Georgiou (1994). Most of these
articles focus on data compression, data filtering and multiscale data
analysis. Further applications are related to inversion of geophysical
data, where optimal model parametrizations are derived (e.g. Ling-
Yun & Wen-Tzong 2003; Loris et al. 2007; Kamm et al. 2009), or
the Jacobian matrix is compressed, such that it can be inverted with
sparse matrix techniques (Li & Oldenburg 2003).

Some attempts have been made within the geophysical commu-
nity to take advantage of wavelet based techniques for numerical
modelling. For example, Hong & Kennett (2003) and Hustedt et al.
(2003) employed wavelet transforms to implement finite difference
algorithms suitable for simulating elastic wave propagation. They
demonstrated the feasibility of the approach, but the computational
savings were at best marginal.

Most of these applications of the wavelet transform including
image compression follow a common philosophy: they decompose
an original data structure, parametrized with small-support basis
functions, using a wavelet transformation and retain only those
components of the transformed quantities that are essential for rep-
resenting the original data with a prescribed accuracy. This implies
that the original data structure needs to be known up-front, which
is a serious limitation particularly for numerical modelling applica-
tions. Conceptually, it would be preferable to approximate the orig-
inal data structure using only a few large-support basis functions,
and then to progressively add further details until the approxima-

tion is sufficiently accurate. That is, it would never be necessary to
compute the complete original data structure.

The latter concept forms the idea of adaptive wavelet modelling.
Early attempts for implementing wavelet techniques were published
by Glowinski et al. (1990), Maday et al. (1991) and Jaffard (1992).
Dahlke et al. (1997) proposed an adaptive algorithm suitable for
solving elliptic differential equations, but its work/accuracy rate
was not shown to be optimal. Vasilyev & Paolucci (1997) proposed
an adaptive wavelet algorithm, which was improved by Kevlahan
& Vasilyev (2005). Geophysical applications were presented for
example in Vasilyev et al. (1997, 2004). They claim to solve the
discrete problem at a computational expense that stays propor-
tional to the generated number of degrees of freedom. However,
they did not show the (asymptotic) optimality of the corresponding
work/accuracy rate, namely that the number of adaptively gener-
ated degrees of freedom stays proportional to the smallest possible
number of degrees of freedom required to achieve the desired ac-
curacy. A landmark paper in the field of adaptive wavelet and also
general numerical modelling was presented by Cohen et al. (2001).
They describe a new algorithm for elliptic problems based on a
new paradigm. This algorithm has an optimal work/accuracy rate,
which could not be shown for earlier methods. In order to reach
this optimality, a series of novel algorithmic concepts needed to be
developed. The first numerical experiments using this algorithm in
one and two dimensions are shown in Barinka et al. (2001). Exten-
sions of the Cohen et al. (2001) algorithm to more general linear
and even to non-linear problems are found in Cohen et al. (2002)
and Cohen et al. (2003b). In Stevenson (2003), the work/accuracy
rate of the Cohen et al. (2002) algorithm was improved in the sense
that it is no longer limited by the compressibility of the stiffness
matrix but only by the regularity of the underlying problem and
the applied wavelet basis. Gantumur et al. (2007) describe an opti-
mal adaptive wavelet algorithm for elliptic problems based on the
Cohen et al. (2001) algorithm, which does not depend on a coarsen-
ing procedure. Burstedde & Kunoth (2008) implemented the Cohen
et al. (2001) algorithm using a conjugate gradient solver. An appli-
cation of the more general linear algorithm to Stoke’s equation was
presented by Jiang & Liu (2008).

To our knowledge, no application of such adaptive wavelet mod-
elling has been published so far in the geophysical literature, but
we judge it to be highly beneficial for a wide range of geophysical
problems. Particularly at an initial stage of a tomographic inver-
sion, when the model structures exhibit a low degree of complexity,
it is expected that geophysical data can be modelled efficiently us-
ing only a few suitable basis functions. In this paper, we present
an application of adaptive wavelet modelling to the 3-D geoelec-
tric problem. We start with a brief introduction of the governing
equations, followed by a general outline of adaptive wavelet mod-
elling. Benefits and limitations are demonstrated using a series of
conductivity models that exhibit different degrees of complexity.
Results are compared with a non-adaptive unstructured mesh finite
element algorithm, which represents the current state-of-the-art in
geoelectric modelling.

2 T H E O RY

2.1 The geoelectric problem

Geoelectrical data are governed by the Poisson equation, which can
be written as

−∇ · (σ∇utot) = I δs, (2)
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where σ is the electrical conductivity, utot is the resulting total elec-
tric potential, I is the injection current and δs is the delta functional,
which is non-zero only at the current injection point xs. At the sur-
face of the modelling domain Neumann no-normal-flow boundary
conditions need to be imposed, and the artificial ground boundaries
can be either approximated with Dirichlet or mixed boundary con-
ditions (Dey & Morrison 1979) or with infinite elements (Blome
et al. 2009).

Note that the classical weak formulation of eq. (2) requires so-
lutions in H 1(#), the space of square integrable functions whose
gradients are also square integrable [or a closed subspace of H 1(#)],
see for example Brenner & Scott (2008) for more details. This re-
quires the right-hand side to belong to the space of all continuous
linear functionals mapping H 1(#) (or the closed subspace) into the
real numbers. This is not true for the 3-D delta functional. Hence the
formulation in eq. (2) leads to difficulties particularly when using
adaptive methods.

To account for this problem, a singularity removal technique, as
introduced by Lowry et al. (1989) and later refined by Zhao & Yedlin
(1996) and Blome et al. (2009) is applied. In the flat-topography
case, the total potential utot is split up into a sum of the Green’s
function for homogeneous conductivities us = I/(2πσ s r ) and an
unknown secondary potential u. Here, σ s is the conductivity at the
current injection point and r is the distance from the current injection
point. The modified Poisson equation after singularity removal is

−∇ · (σ∇u) = −∇ · [(σs − σ )∇us]. (3)

For a wide range of conductivities σ (e.g. piecewise constant and
not varying in a neighbourhood of the source) this new right-hand
side is contained in H−1 (#). A favourable side effect of singularity
removal is the fact that if the structural complexity of the subsurface
is low, the secondary potentials exhibit relatively simple shapes,
which can be approximated with only a few basis functions.

2.2 Adaptive Galerkin methods and wavelet basis
functions

Adaptive wavelet algorithms belong to the class of Galerkin meth-
ods (e.g. Brenner & Scott 2008), and are thus closely related to finite
elements. The basic principle of a Galerkin method is to transform
the original equation L (u) = b (e.g. eq. 2 or 3) into a weak or vari-
ational formulation (e.g. Brenner & Scott 2008). Then the solution
u is approximated by a finite set of basis functions φ1, φ2, . . . , φN ,
such that u can be written as a linear combination of this set

u =
N∑

i=1

uiφi , (4)

where ui are the unknown coefficients to be determined. Addition-
ally φ1, φ2, . . . , φN are employed as testing functions. This leads
finally to a system of equations as written in eq. (1).

Traditional approaches such as finite differences and standard
finite elements employ small-support basis functions, such that one
function only influences the region in the vicinity of a single point,
as shown for a 1-D domain in Fig. 1(c) for a finite element basis. All
basis functions must be considered for the solution of the problem
L (u) = b, since otherwise the solution would be zero at the omitted
functions point value. This may result in a very large set of equations
that needs to be solved in order to attain sufficient accuracy.

Typically, large areas of the solution do not vary too strongly
and could hence be approximated with a less dense mesh. How-
ever, it is generally not known a priori, where these areas are. A
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Figure 1. Examples of 1-D model parametrizations. (a) Scaling functions
at level 2. (b) A selection of wavelets on different levels with different
positions. (c) FEM hat functions for an equivalent resolution as the wavelet
basis up to level 2. The dashed lines indicate the nodes of the hat functions.
The finite elements are the intervals between the dashed lines on the x-axis.

possible option to address this problem is to employ adaptive algo-
rithms, where the computational domain is discretized initially with
a coarse mesh. Then, the mesh is locally refined until the desired
accuracy is reached. During the past few years, significant improve-
ments of such adaptive algorithms could be achieved. Among strong
improvements in finite element based approaches (e.g. Binev et al.
2004; Cascon et al. 2008), also adaptive wavelet algorithms were
proposed (e.g. Cohen et al. 2001, 2003b). In contrast to the adaptive
finite element algorithms, refinements of the mesh in a particular
area is achieved by simply considering more small-support func-
tions.

Adaptive wavelet algorithms employ a hierarchically structured
set of functions, a so-called wavelet basis, in which one can distin-
guish between scaling functions ϕ and wavelets ψ . There are dif-
ferent possibilities to implement wavelet bases (Cohen et al. 1992;
Dahmen et al. 1999). We choose the shapes of the scaling functions
(Fig. 1a) to be identical to those of the linear finite element basis
functions (Fig. 1c)

ϕl,k(x) :=






2
3l
2 [x − 2−l (k − 1)] if 2−l (k − 1) ≤ x ≤ 2−l k

2
3l
2 [2−l (k + 1) − x] if 2−l k < x ≤ 2−l (k + 1)

0 elsewhere, (5)
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where the index l specifies the level and index k with 1 ≤ k ≤ 2l −
1 the position of the scaling function. The wavelets (Fig. 1b) are
defined as

ψl,k = 1√
2

(
− 1

8
ϕl+1,2k−3 − 1

4
ϕl+1,2k−2 + 3

4
ϕl+1,2k−1+

−1
4
ϕl+1,2k − 1

8
ϕl+1,2k+1

)
, (6)

with 2 ≤ k ≤ 2l − 1. At the boundaries, suitably modified scaling
functions and wavelets are applied.

A hierarchical set of basis functions starts at a prescribed level
l0. In principle, one could start with l0 = 0, but higher (or negative)
levels are possible as well. For example, the simulations shown later
in the paper always start at level l0 = 3. Scaling functions are only
considered at level l0, and wavelets are chosen at levels ≥l0. Scaling
functions at level l0, together with all wavelets at levels l0 to l >

l0, describe exactly the same information as a corresponding finite
element basis with a mesh size of 2−(l+1) but the mesh of the wavelet
basis can be refined or coarsened by simply adding or removing
wavelets in a specific area (Cohen et al. 2001). More details on our
choice of scaling functions and wavelets are given in Appendix A,
where we also outline, how the concept can be extended to higher
dimensions.

Wavelet bases for our purposes offer the following three principal
features (see e.g. Dahmen 2003):

(i) Locality: Wavelets are only nonzero in a small area. The size
of this area is geometrically reduced for higher levels.

(ii) Cancellation property: Integration against wavelets annihi-
lates smooth parts.

(iii) Norm equivalence: The norm of the wavelet coefficient se-
quence is equivalent to the norm of the function it represents.

These main features lead to the following beneficial charac-
teristics: Wavelet parametrization allows optimal diagonal pre-
conditioning of the system matrix in eq. (1). That is, a diagonal
pre-conditioning matrix can be calculated, such that the condition
number of the resulting system of equations does not exceed a
value cmax, which is independent of the detail level chosen (Cohen
et al. 2001, 2003b). This allows eq. (1) to be solved efficiently with
iterative methods such as conjugate gradient algorithms.

Here, the cancellation property is implemented by the property
of vanishing moments, meaning that polynomials up to a fixed de-
gree can be represented exactly using solely the scaling functions
(Dahmen et al. 1999). This is advantageous for functions, which
almost behave like those polynomials in certain areas of the do-
main, for example, functions that describe geoelectric secondary
potentials in areas with only small conductivity contrasts.

Finally, adaptive wavelet algorithms have been proven to exhibit
optimal work/accuracy rates for a wide scope of problems including
types of non-linear problems (Cohen et al. 2003b). At present anal-
ogous convergence and complexity estimates for such a wide range
of problems do not seem to be available for other discretization
concepts.

These properties allow the unknown field contained in vector U
(eq. 1) to be well approximated with a relatively small number of
basis functions (i.e. a wavelet based algorithm has the potential to
be computer memory efficient), and the resulting system of equa-
tions can be solved with a relatively small number of matrix vector
multiplications (i.e. the algorithm has the potential to be efficient in
terms of computing time). This holds for many different geophysical
problems.

2.3 The adaptive wavelet algorithm

As a first step, the wavelet expansion of the right-hand side vector
in eq. (1) is performed using all scaling functions and wavelets up
to a specified level lmax. Furthermore, all coefficients of the initial
solution vector Ū are initially set to zero. In the next step, the
residual vector Rtotal = Btotal − AtotalŪ (where Atotal and B total are
the operator and the right-hand side expanded in the full wavelet
basis) is approximated with an accuracy of η by R̃, defined as

R̃ = B̃ − ÃŪ , (7)

where B̃ is chosen such that a minimal number of wavelet basis
functions is employed (i.e. a minimal number of the associated coef-
ficients are non-zero) and ‖Btotal − B̃‖ is smaller than η/2. This pro-
cedure is referred to as coarsening. Additionally, the matrix-vector
product AtotalŪ is approximated, such that a minimum number of
wavelet basis functions is employed, and the norm ‖AtotalŪ − ÃŪ‖
is also smaller than η/2 . This procedure is referred to as adaptive
operator application, which is the most important component of the
entire algorithm. More details on coarsening and adaptive operator
application are given in Appendix B.

In the next stage of the scheme, the wavelet basis functions asso-
ciated with non-zero entries in B̃ and ÃŪ are assembled in a system
of equations

AU = B. (8)

This system is solved with an iterative solver. The adaptive
wavelet algorithm is proven to converge for certain types of it-
erative solvers as for example the damped Richardson iteration (see
Cohen et al. 2003b). For practical reasons we apply the conjugate
gradient (CG) algorithm. Although the scheme is not proven to con-
verge on varying sets of basis functions, the CG algorithm shows
good results in our examples. CG iterations are carried out, until
the ‘CG residual’

Rk = B − AU (9)

is reduced by a factor α. Note that all matrix-vector multiplications
within the CG algorithm are computed using the adaptive operator
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Figure 2. Sketch of two ESC cycles. When choosing new basis functions,
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Figure 3. (a), (c), (e), (g) The positions of the wavelets used for the ESC cycles 2, 4, 6 and 8 after coarsening. The scaling functions are not displayed. (b), (d),
(f), (h) show the adaptive wavelet solution after ESC cycles 2, 4, 6 and 8 (dashed line) compared to the analytic solution (solid line). Wherever rapid changes
in the solution occur, high-level wavelets are needed. In areas, where the analytic solution almost shows linear behaviour, only a small number of wavelets is
required.

application as introduced above. As a consequence of that, the
wavelet basis may slightly grow during the CG iterations.

Since the matrix A always has a small condition number, which
does not exceed a maximum value cmax (Cohen et al. 2003b), each
CG iteration on a fixed set of wavelet basis functions reduces the
CG residual by a fixed factor. Hence if the chosen set of wavelets
only varies in the first few iteration steps only a fixed, typically small
maximum number of CG iterations is required to reach the reduction
by a factor of α. This maximum number of CG iterations remains
constant during the execution of the entire wavelet algorithm.

Once the residual reduction by α has been achieved, some of
the coefficients associated with the solution vector U may be quite
small and can thus be eliminated. This is achieved by applying a
coarsening on vector U resulting in a new vector Ū , as described
earlier for the right-hand side vector B total. Then the residual Rtotal

is approximated again (eq. 7) for a new accuracy η′ = 0.5η and
new scaling functions and wavelets are selected. The procedure is
repeated until the residual R̃ is acceptably low.

Fig. 2 summarizes the iterative procedure. The vertical axis indi-
cates the true modelling error and the horizontal axis indicates the
degrees of freedom (DoF, i.e. the number of scaling functions and
wavelets chosen). Here, the error is defined as the average absolute
deviation between the true function values (or a numerical refer-
ence solution calculated on a very fine mesh using a finite element
method) and their approximations determined on a fine sampling
grid. The work/accuracy results for such adaptive wavelet schemes
refer to error bounds for the approximate solutions with respect to
the energy norm (in the present situation to the H 1-norm, the sum
of the square norm of the function and the square norm of its gra-
dient). In our subsequent tests we will, however, monitor averages
of pointwise errors as explained above which is not covered by the
existing theory and may therefore offer an interesting insight in this

regard. The first horizontal segment of the process curve represents
the choice of new coefficients taken from the approximation of the
residual R̃ and the subsequent inclined segment indicates the accu-
racy improvement achieved during the CG iterations. The following
coarsening of vector U reduces the number of DoF, but may also
result in a small increase of the modelling error. The following
segments represent the repeated cycles of

Estimate residual/choose new basis functions—Solve with CG—Coarsening
(ESC).

A more extensive description of the algorithm is found in Ap-
pendix B and in Cohen et al. (2003b). Cohen et al. (2003b) also
includes the proofs of the following distinctive features of the algo-
rithm:
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C© 2010 The Authors, GJI, 182, 741–752
Journal compilation C© 2010 RAS



746 A. Plattner et al.

Figure 5. Conductivity models used to test the adaptive wavelet algorithm. The background conductivity is 0.01 S m−1 for each model. Source positions are
indicated by arrows.
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(i) The final number of DoF required is optimal in the sense that
it scales linearly with the theoretical minimum number of DoF for
a given accuracy (in the energy norm, as described above).

(ii) Memory consumption scales linearly with the final number
of DoF. Hence, the sparsity of the system matrix in eq. (1) remains
constant.

(iii) The number of scalar operations (i.e. scalar multiplications,
including sorting) involved in the algorithm scales linearly with the
final number of DoF. Hence, computation time also scales linearly
with the final number of DoF.

2.4 A simple example

The functionality of the algorithm is demonstrated using a simple
1-D Laplace problem with zero boundary conditions:

*u(x) = f (x), (10)

where the function f (x) is chosen such that the solution should be

u(x) = [x2 sin(7πx) − 1](x − 1)x . (11)

The left-column panels in Fig. 3 indicate the wavelets chosen within
each iteration, whereas the right-column panels show the true (solid
line) and approximated (dashed line) solutions. After iteration 2, the
true solution is roughly approximated and after four iterations
the accuracy is already quite good. Further iterations still improve
the accuracy, but the associated error plot in Fig. 4 indicates that the
absolute error begins to flatten out. This is due to the reduction of
the error by a constant factor: if an error of ε is reached, the error
after the next iteration is at most β ε for some fixed β ∈ (0, 1),
which may lead to insignificant improvements, if ε is already small.

Note that areas, where the solution shows almost linear behaviour,
require a small number of wavelet basis functions, whereas highly
non-linear areas lead to a larger number of wavelet basis functions
(Fig. 3). This effective compression is caused by the vanishing
moments of the wavelet basis.

3 N U M E R I C A L P E R F O R M A N C E T E S T S

We have applied our adaptive wavelet algorithm to a 3-D geoelectric
problem on a rectangular prism domain with Neumann boundary
conditions on the surface boundary and mixed type boundary con-
ditions along the artificial ground boundaries. Furthermore, singu-
larity removal was applied, that is, eq. (3) is solved.

The algorithm is expected to perform best when the structural
complexity of the conductivity distribution in the modelling domain
is low. With increasing subsurface complexity, the performance may
degrade in terms of number of DoF. In fact, adaptivity shows the best
performance when it is applied in order to capture isolated features
using only a small number of DoF. Conductivities that exhibit rapid
spatial variations across the domain require a fine mesh everywhere,
which leads to an almost uniform refinement.

To investigate the behaviour of the algorithm, we have constructed
three models of increasing complexity. The first model consists
of a homogeneous background conductivity (0.01 S m−1) with a
single prismatic anomaly (0.1 S m−1, Fig. 5a). The second model
comprises six prismatic anomalies of different sizes and shapes
(Fig. 5b). Conductivities lie between 0.001 and 1 S m−1. The third
model includes 343 equally sized blocks of stochastically distributed
conductivities between 0.003 and 0.08 equally distributed in a ho-
mogeneous background medium (Fig. 5c). For all computations
we considered a single current injection point located at (30,15,0)
(indicated by the arrows in Figs 5a–c).

In order to assess the performance of the adaptive wavelet al-
gorithm and to show improvements compared to widely used al-
gorithms in the geophysical community, we additionally computed
the response of the three models in Fig. 5 using the non-adaptive
finite element code B2009 as described in Blome et al. (2009). This
finite element code is representative of the current state-of-the-art
in geoelectric modelling. It employs unstructured meshes and a di-
rect matrix solver. To make the results more comparable with the
adaptive wavelet algorithm, we substituted the direct matrix solver
of Blome et al. (2009) with a conjugate gradient solver using SSOR
pre-conditioning (as is used in Spitzer 1995, for the finite difference
method). For this type of problems, direct and CG solvers provide
a similar accuracy, when sufficient iterations are performed. Ref-
erence solutions were computed with the B2009 algorithm using a
very large number of elements (1.5 million DoF). The modelling er-
ror was determined by interpolating the adaptive wavelet algorithm
solution on the fine mesh of the reference solution and computing
the average absolute deviation with respect to the reference solution.

Fig. 6 depicts the ESC cycles for the computations with the 3
models shown in Fig. 5. Additionally, the absolute errors of the
B2009 algorithm are plotted as a function of the number of DoF.
CG iterations were carried out for the B2009 finite element al-
gorithm until the CG residual reached 10−9, which is well below
the actual modelling error. As expected, the performance of the
adaptive wavelet algorithm is excellent for the simple single em-
bedded prism model (Fig. 6a). After only 3 ESC cycles the absolute
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Figure 6. ESC cycles for the 3-D geoelectric models (solid line) together
with solutions using the B2009 finite element algorithm (dashed line), which
represents the state-of-the-art in geoelectric modelling.
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Figure 7. (a), (c), (e) Slices through the centre of the prismatic anomaly in the single embedded prism model for ESC cycles 1, 3 and 5. (b), (d), (f) Slices
through the centre of the prismatic anomaly for the difference to the FEM reference solution computed with 1.5 million DoF for ESC cycles 1, 3 and 5.

error is at about 10−4, which is well below the error of the B2009
solution with a comparable number of DoF. To achieve the same
accuracy with the B2009 algorithm, roughly twenty times more
DoF would be required. Similar results were also obtained for the
model with six prismatic anomalies (Fig. 6b). For the most complex
model (Fig. 6c) the performance of the adaptive wavelet algorithm
in terms of number of degrees of freedom degrades (as expected)
and becomes comparable to the B2009 finite element algorithm.
Nevertheless, the adaptive method guarantees a desired accuracy. If
even more complex models would be considered, the performance
of the adaptive wavelet algorithm may further degrade during the

first ESC cycles. In such situations homogenization or other upscal-
ing techniques may be required.

Besides this overall measure of accuracy (vertical axis in Fig. 6),
it is also instructive to observe how the errors are distributed within
the modelling domain. For that purpose we plotted slices through
the adaptive wavelet solutions (only the secondary potentials arising
from the anomalous prism are displayed) using the single prismatic
anomaly model after completion of ESC cycles 1, 3 and 5 (Fig. 7).
Additionally, the corresponding differences to the reference solution
are displayed. After the first cycle, the solution is rather blocky,
since it only considers scaling functions and low-level wavelets.
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Nevertheless, it already captures the most important features of the
bipolar secondary field created by the prismatic anomaly. After ESC
cycle 3, the solution improves significantly, and after ESC cycle 5
the relative errors become negligibly small.

As seen for the simple 1-D example in Fig. 3, an excellent ap-
proximation of the solution is already achieved with a few low-level
wavelet basis functions in areas where the solution shows almost
linear behaviour (away from the conductivity contrasts). Close to
the contrast, a number of higher-level wavelet basis functions is
required in order to accurately represent the solution.

Results in Fig. 6 demonstrate the memory efficiency of the adap-
tive wavelet algorithm. That is, a high accuracy can be achieved
with a small number of DoF. Fig. 8 illustrates the other important
property of the numerical algorithm—its computing time efficiency.
In Fig. 8, we plot in log-log form the modelling error as a function
of the computing time. Computing time is not only a function of
the inherent performance of an algorithm, but also largely depends
on the efficiency of its implementation. The B2009 finite element
algorithm is based on highly optimized finite element and BLAS
libraries, whereas our adaptive wavelet code is still experimental
and needs to be optimized in terms of its implementation. Here,
we are primarily interested in the decline of the modelling error as
a function of computing time and have therefore plotted the adap-
tive wavelet curves with a shifted time axis such that they can be
compared easily with the corresponding B2009 curves. The most
important observation in Fig. 8 is that all adaptive wavelet curves
exhibit a slope of approximately −1, thereby indicating that the
accuracy improvements scale linearly with computing time. This
behaviour was predicted theoretically in Cohen et al. (2003b). By
contrast, the B2009 curves have a slope of approximately −1/2,
which indicates that the modelling accuracy scales with the com-
puting time squared.

Initially, the slopes of Fig. 8 deviate from −1. This is caused
by parametrization of the conductivity model, which has a higher
spatial resolution than the initially applied large-support wavelet

basis functions (the scaling functions and the low-level wavelets).
Therefore, the computation of the system matrix entries needs to
be conducted with a higher resolution than required for the wavelet
basis functions. However, it can be observed that as soon as the
wavelet resolution reaches the conductivity model resolution, a lin-
ear decrease of the error is achieved. This does not have a strong
effect on the overall computation time, since this only applies to
the first few steps, where computations of the single ESC cycles are
very fast.

It is also instructive to compare the relative vertical shifts of the
individual curves. The adaptive wavelet curves for the six prismatic
anomalies model and the complex model lie on top of each other,
whereas the six prismatic anomalies curve for the B2009 algorithm
lies well above the corresponding complex model curve. This is
most likely the result of the optimal pre-conditioning in the wavelet
basis. The computational time of the adaptive wavelet algorithm
does not depend on the magnitudes of the contrasts but only on
their geometrical distribution and hence the number of wavelets
needed to approximate the solution. In contrast, the non-adaptive
B2009 computation time does not so much depend on the geom-
etry of the conductivity contrasts but mostly on their magnitudes,
since this strongly affects the condition number of the system of
equations in eq. (1). Hence the adaptive wavelet algorithm is highly
efficient, when the model complexity is low. Although the adaptive
wavelet algorithm shows a decrease in efficiency in terms of number
of DoF when the models are more complex, its slope of −1 still
leads to superior performance compared to the B2009 method for
higher accuracies.

4 D I S C U S S I O N A N D C O N C LU S I O N S

Using the example of 3-D geoelectric forward modelling we have
demonstrated the capabilities and limitations of adaptive wavelet al-
gorithms with optimal work/accuracy rate, a novel technique that
was proposed recently in the mathematical literature. To the best
of our knowledge this is the first application of such techniques
to a geophysical problem. From our calculations we observe the
following.

(i) The adaptive wavelet algorithm with optimal work/accuracy
rate together with singularity removal is a powerful method for
geoelectric modelling.

(ii) The error convergence rate is also good in the discrete L1-
norm, which has not yet been covered by the theory.

(iii) The performance in terms of memory consumption and
time-versus-error rate is superior to the common methods currently
applied in geoelectric modelling.

(iv) General features of adaptive methods offer scope for further
developments.

Future research should focus on an optimized implementation of
adaptive wavelet algorithms with optimal work/accuracy rate. Dur-
ing the past few decades, probably a 1000 person years or even more
have been dedicated to the optimization of finite element codes,
while wavelet codes are still in an experimental stage and thus far
away from optimality. Fully exploiting the memory and computing
time efficiency of adaptive wavelet solvers will undoubtedly lead to
substantial improvements in geophysical modelling.

This could be good news for those concerned with the challeng-
ing seismic modelling problem. With the increasing popularity of
seismic waveform inversions, there is an urgent need for efficient
modelling algorithms. Conceptually, adaptive wavelet algorithms
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are well suited for acoustic and elastic waveform modelling prob-
lems in the frequency domain, but care should be taken with the
choice of the right-hand side in eq. (2) (source term) that must have
an appropriate smoothness, which is dictated by the corresponding
function space. This may require application of singularity removal
techniques to the governing differential equations.

An important difference between potential field problems, as
discussed in this paper, and wavefield problems, such as seismic
waveform modelling, concerns the spatial variability of the fields.
Particularly at high frequencies, seismic modelling may require a
large number of degrees of freedom to be considered. In fact, our
computations for the complex model (Fig. 5c) demonstrate that in
such a case there are little benefits with regard to memory con-
sumption (Fig. 6c). However, even when a large number of degrees
of freedom must be considered, our algorithm is still beneficial in
terms of computing time, as it is demonstrated in Fig. 8.
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A P P E N D I X A : WAV E L E T S

A1 More on 1-D wavelet basis functions

The 1-D scaling functions and wavelets considered in this appendix
are confined to powers of the unit interval [0, 1], but extensions to
other intervals can be achieved by shifting and dilation. The wavelet
basis functions on the inside of the interval are described with eqs
(5) and (6) in Section 2.2. At the boundaries 0 and 1, the following
functions are used

ϕl,0(x) =
{

2
3l
2 (2−l − x) if 0 ≤ x ≤ 2−l

0 elsewhere
(A1)

and

ϕl,2l (x) =
{

2
3l
2 (x + 2−l − 1) if 1 − 2−l ≤ x ≤ 1

0 elsewhere,
(A2)

for the scaling functions and

ψl,1 = 1√
2

(
−3

4
ϕl+1,0 + 9

16
ϕl+1,1+

−1
8
ϕl+1,2 − 1

16
ϕl+1,3

) (A3)

and

ψl,2l = 1√
2

(
− 1

16
ϕl+1,2l+1−3 − 1

8
ϕl+1,2l+1−2+

+ 9
16

ϕl+1,2l+1−1 − 3
4
ϕl+1,2l+1

)
,

(A4)

for the wavelets (Cohen et al. 1992; Dahmen et al. 1999).
V 1D

l : span (ϕl,k | 0 ≤ k ≤ 2l) is the vector space of all possible
linear combinations of the scaling functions at level l and W 1D

l :
span (ψ l,k | 1 ≤ k ≤ 2l) is the vector space of all possible linear
combinations of the wavelets at level l. They are related as follows:

. . . ⊂ V 1D
2 ⊂ V 1D

3 ⊂ V 1D
4 ⊂ . . . , (A5)

W 1D
l ⊂ V 1D

l+1 and V 1D
l+1 = V 1D

l ⊕ W 1D
l . (A6)

These piecewise linear wavelets have the advantage that they are
very simple to handle within integrals. Furthermore, they are not
orthogonal (not required for our algorithm) but biorthogonal (Cohen
et al. 1992).

A2 Wavelet basis functions in two and more dimensions

Tensor product constructions can be used for creating higher-
dimensional wavelet basis functions (Dahmen & Schneider 1999).
The tensor product of a function f (x) with a function g(y) is defined
as

( f ⊗ g)(x, y) := f (x)g(y). (A7)

The tensor product of two function spaces V and W is the linear
span of all tensor products of functions in V with functions in W .
Note that in general f ⊗ g -= g ⊗ f . We use this definition to create
wavelet basis functions in two dimensions. 2-D scaling functions
are identified with three parameters: level l, shift in x-direction kx

and shift in y-direction ky. The scaling functions ϕl,kx ,ky (x, y) are
defined as

ϕl,kx ,ky (x, y) := (ϕl,kx ⊗ ϕl,ky )(x, y)

= ϕl,kx (x)ϕl,ky (y).
(A8)

We denote the 2-D scaling functions by V 2D
l := span(ϕl,kx ,ky | 0 ≤

kx ≤ 2l and0 ≤ ky ≤ 2l ). Wavelets in two dimensions are the
complement of V 2D

l in V 2D
l+1. Using V 2D

l = V 1D
l ⊗ V 1D

l we get

V 2D
l+1 = V 1D

l+1 ⊗ V 1D
l+1 =

(
V 1D

l ⊕ W 1D
l

)
⊗

(
V 1D

l ⊕ W 1D
l

)

=
(
V 1D

l ⊗ V 1D
l

)
⊕

(
V 1D

l ⊗ W 1D
l

)
⊕

⊕
(
W 1D

l ⊗ V 1D
l

)
⊕

(
W 1D

l ⊗ W 1D
l

)
.

(A9)

Hence

W 2D
l =

(
V 1D

l ⊗ W 1D
l

)
⊕

(
W 1D

l ⊗ V 1D
l

)
⊕

⊕
(
W 1D

l ⊗ W 1D
l

)
.

(A10)

Therefore the wavelets in two dimensions consist of functions of the
shape ϕl,kx (x)ψl,ky (y), ψl,kx (x)ϕl,ky (y) and ψl,kx (x)ψl,ky (y). Wavelet
bases in higher dimensions can be constructed accordingly.

A P P E N D I X B : T H E A DA P T I V E
WAV E L E T A L G O R I T H M

In this Appendix, we give an overview of the implementation of
our algorithm that largely follows Cohen et al. (2003b). For more
details, we therefore refer to the Cohen et al. (2003b) paper and
the references contained therein. For practical reasons, we have
replaced the damped Richardson iteration in Cohen et al. (2003b)
by a CG method.

The algorithm depends on a set of parameters, which we will
describe briefly. The coefficient β estimates the ratio of the absolute
error between a given approximation U of the solution U total and
the estimated residual of U depending on the underlying problem
and the chosen iterative solver (here CG). C∗ controls the As

tree-
norms of the resulting vector after the coarsening, where As

tree-norm
is a measure for the approximability of a vector by small trees.
The parameter γ , which plays an important role in the adaptive
operator approximation describes the wavelet compressibility of
the operator. The parameter ρ̄ ∈ (0, 1) and the summable sequence
of parameters {ωk}∞

k=0 can be freely chosen. They influence the
computation time and the memory consumption but do not influence
the linear work/accuracy rate. Note that these parameters are adapted
to the damped Richardson iteration and no mathematical proof exists
for the application of the CG method. In our case, we set β =
100, C∗ = 2, γ = 7, ρ̄ = 0.95, ωk = 0.9k .

Sets of wavelet basis functions (which in this algorithm always
form a tree) are denoted with 0. We write 0̃n for sets of newly
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acquired functions, 0n for the sets after the CG-iterations and 0̄n

for the coarsened sets. The associated vectors of coefficients are
denoted by B for the right-hand side, U for the solution and R for
the approximation of the residual, where the index set is indicated
in the subscript.

Algorithm AdaptiveSolve (ε)
Input: desired accuracy
Output: Optimal set of functions 0opt, solution U0opt

(∗ Main algorithm ∗)
1. Calculate the wavelet expansion of the right-hand side∑

λ∈0full
bλφλ

2. Set B0full = (bλ)λ∈0full

3. Set n = 0; 0̄0 = ∅; Ū0̄0
= 0

4. Set ε0 = ‖B0full‖2

5. while εn > ε

6. do Set n = n + 1

7.
[0̃n, R̃0̃n ] = EstimateResidual
(0̄n−1, Ū0̄n−1

, B0full , ω0εn−1)
8. [0n, U0n ] = SolveCG(0̃n, Ū0̄n−1

, R̃0̃n , εn−1)
9. [0̄n, Ū0̄n ] = Coarse (U0n , εn−1C∗/(2 + 2C∗))
10. Set εn = εn−1/2
11. return 0opt = 0̄n ; U0opt = Ū0̄n

The three steps EstimateResidual, SolveCG and Coarse correspond
to the ESC steps described in Section 2.3. The subroutine Esti-
mateResidual is defined as

Algorithm EstimateResidual (0̄n−1, Ū0̄n−1
, B0full , εn−1)

Input: Set of functions, solution, right-hand side, desired accuracy
Output: Set of functions 0̃n , Approximation of the residual ,R̃0̃n

(∗ Approximates the residual ∗)
1. [01, V ] = ApplyOperator (Ū0̄n−1

, 0.5ω0εn−1)
2. [02, W ] = Coarse(B0full , 0.5ω0εn−1)
3. return R̃0̃n := V − W and 0̃n := Those functions in

01 ∪ 02, for which V − W has non-zero entries

In this subroutine the function ApplyOperator, which approxi-
mates the application of the operator to the current solution with
the given accuracy is the core ingredient of the adaptive wavelet al-
gorithm. Since the application of the operator cannot be computed
(this would result in a multiplication of a rectangular infinite matrix
with a finite vector), it needs to be approximated. The approxima-
tion is conducted by first setting up a tree of wavelet basis functions
for which the coefficients will approximate the application with
the desired accuracy (see Cohen et al. 2003a, theorem 3.4 and the
related construction of the tree), then calculating the coefficients
using the fast top-down evaluation scheme described in Dahmen

et al. (2000). Before the approximation is calculated, a diagonal
pre-conditioner di = 1/

√
aii is applied, where aii are the diagonal

entries of the system matrix A in eq. (8). This ensures an optimal
condition number (Cohen & Masson 1999). Here, ‘optimality’ in-
dicates that the condition number of the pre-conditioned system
matrix is bounded for all detail levels. Hence all solutions using a
CG algorithm on a fixed basis can be calculated up to a given accu-
racy using a fixed (small) number of CG iterations. Other possibil-
ities of optimal pre-conditioning can be found in Cohen & Masson
(1999).

The subroutine SolveCG is set up as

Algorithm SolveCG(0̃n, Ū0̄n−1
, R̃0̃n , εn−1)

Input: Set of functions, previous solution, approximated
residual of the previous solution, desired accuracy

Output: Set of functions 0n, solution U0n ,

(∗ Modified conjugate gradient solver ∗)
1. Set k = 0; 00 = 0̃n ; U 0 = Ū0̄n−1

2. Set Pk = R̃0̃n ; Rk = −R̃0̃n

3. while ωk ρ̄
kεn−1 + ‖Rk‖2 >εn−1/((2 + 2C∗)β)

4. do Set k = k + 1
5. [0k, V ] = ApplyOperator (Pk−1, 0.5ωk ρ̄

kεn−1)

6. U k = U k−1 + (Rk−1·Rk−1)
(Pk−1·V )

Pk−1

7. Rk = Rk−1 + (Rk−1·Rk−1)
(Pk−1·V )

V

8. Pk = (Rk ·Rk )
(Rk−1·Rk−1)

Pk−1 − Rk

9. return 0n = 0k ; U0n = U k

This routine is a generic conjugate gradient solver (e.g. Shewchuk
1994), except that the application of the operator restricted to 0̃n is
replaced by the function ApplyOperator described above.

In the function Coarse an as large as possible number of coef-
ficients is removed from the given vector, such that the norm of
the difference from the initial vector is smaller than a prescribed
value 0.5ω0εn−1. Additionally, the tree structure is preserved. An
exact description of this procedure can be found in Binev & DeVore
(2004).

Optimality is achieved by keeping the number of scalar oper-
ations linear with the number of wavelet basis functions in the
routines ApplyOperator and Coarse. Since the condition number of
the diagonally pre-conditioned operator in the wavelet basis is al-
ways smaller than cmax, the number of iterations inside the SolveCG
routine does not exceed a maximum number K if the basis does not
vary after the first few steps. Because each ESC cycle leads to an
error reduction by a constant factor, only a fixed maximum number
of iterations is required to reach a given target accuracy. Therefore,
the number of total scalar operations scales linearly with the final
number of degrees of freedom.
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